THE PULSE OF THE FUTURE

PVX-4140

±3,500V PULSE GENERATOR

- 0 to ±3500V Pulse Output
- ≤25ns Rise And Fall Times
- ≤60ns to DC Pulse Width
- >30KHz Pulse Repetition Frequency
- Optimized To Drive Deflection Plates, Grids, Pockels Cells And Other Capacitive Loads
- Protected Against Arcs, Shorts And Load Transients
- Voltage And Current Monitor Outputs

The PVX-4140 pulse generator produces fast, high voltage wave forms to 3,500V. Optimized for high impedance capacitive loads, the PVX-4140 is well suited for driving extraction grids and deflection plates for electrostatic modulation of particle beams in time-of-flight mass spectrometers and accelerators. Its robust and versatile design also makes it well suited for pulsing or gating power tube grids, Pockels cells and Q Switches, acoustic transducers, microchannel plates, photomultiplier tubes and image intensifiers. The exceptional pulse fidelity of the PVX-4140 will optimize the performance of any system in which it is used.

The PVX-4140 generates an output voltage pulse of 3,500 volts with rise and fall times of 25ns or less, with very flat voltage pulses to DC into a capacitive load. It can generate single-ended output pulses from ground to +3500V or from ground to −3500V, and can also generate pulses originating from a DC voltage offset from ground by using both VLow and VHigh power supply inputs. This offset can be from −3500V to +3500V, with a maximum power supply voltage differential of ±3500V.

The PVX-4140 requires a user-supplied TTL gate signal, a high voltage DC power supply and optional DC offset supply inputs. The output pulse width and frequency are controlled by the gate signal. The pulse output voltage is controlled by the amplitude of the input DC power supplies.

When the input gate is high, the VHIGH supply is connected to the output. When the input gate is low, the VLOW supply is connected to the output. Therefore the PVX-4140 can be used to generate a negative-going pulse by logically inverting the input gate, so that the input gate is high until the unit is pulsed. When the input gate goes low, the VLOW input supply is connected to the output, thereby generating a negative-going pulse.

The PVX-4140 generates an output voltage pulse of 3,500 volts with rise and fall times of 25ns or less, with very flat voltage pulses to DC into a capacitive load. It can generate single-ended output pulses from ground to +3500V or from ground to −3500V, and can also generate pulses originating from a DC voltage offset from ground by using both VLow and VHigh power supply inputs. This offset can be from −3500V to +3500V, with a maximum power supply voltage differential of ±3500V.

The pulse generator is a direct-coupled, air-cooled solid-state half-bridge (totem pole) design, offering equally fast pulse rise and fall times, low power dissipation, and virtually no over-shoot, under-shoot or ringing. It has over-current detection and shut-down circuitry to protect the pulse generator from potential damage due to arcs and shorts in the load or interconnect cable. All control and protection logic circuitry, support power, energy storage and output network are incorporated into the PVX-4140. It can be connected directly to the load, and does not require series or shunt resistors, impedance-matching networks between the pulser and the load, or additional energy storage (capacitor banks). All of this is taken care of within the PVX-4140.
SPECIFICATIONS (All specifications measured into a 50pF load connected with 6 feet (~1.8M) of RG-59 (75Ω) coaxial cable)

OUTPUT
- Maximum Value: ±3500 Volts ($V_{\text{High}} - V_{\text{Low}}$)
- Minimum Value: 0 Volts
- Means Of Adjustment: Controlled By Power Supply Input Voltages
- Pulse Rise And Fall Time: ≤25ns (10% to 90%)
- Pulse Width: ≤60ns to DC, Controlled by Input Gate
- Pulse Recurrence Frequency (PRF): Single shot to 30KHz at 3500V continuous output, maximum limited by power dissipation (1), 5MHz Burst, Controlled by Input Gate
- Max. Average Power: 100W ($V_{\text{High}} + V_{\text{Low}}$)
- Max. Duty Cycle: Continuous
- Droop: <1%
- Over/undershoot: <5%
- Throughput Delay: 120ns Typical
- Jitter: <200ps shot-to-shot

INPUT DC VOLTAGE $+V_{\text{IN}}$ (V_{High})
- Absolute Max. Value: +3500 Volts
- Absolute Min. Value: -3500 Volts
- Relative Max. Value: +3500 Volts over V_{Low} Voltage
- Relative Min. Value: +0V Over V_{Low} Voltage

INPUT DC VOLTAGE $-V_{\text{IN}}$ (V_{Low})
- Absolute Max. Value: +3500 Volts
- Absolute Min. Value: -3500 Volts

INPUT DC Connectors:
- SHV, Rear Panel (One each for $+V_{\text{IN}}$ and $-V_{\text{IN}}$)

GATE
- Gate Source & Connector: TTL into 50Ω, into BNC connector on the end panel

VOLTAGE & CURRENT MONITORS
- Voltage Monitor: 1000:1 into 1 MegΩ, BNC connector
- Current Monitor: 10A/V into 50Ω, BNC connector

GENERAL
- Support Power: 90VAC to 240VAC, 50/60Hz
- Dimensions (Excluding Connectors): 19" W x 5.2" H x 13" D (48.25cm W x 13.2cm H x 33cm D)
- Weight (Approximate): 18 lbs. (8.2 Kilograms)

SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE

These specifications are measured driving a 50pF load connected with 6 feet of RG-59 cable, at 3500V output. However, the PVX-4140 can drive loads of a few picofarads to several hundred picofarads of capacitance, limited by its maximum power dissipation capability(1). At lower load capacitances and/or voltages less than 3500V, the PVX-4140 can operate at continuous pulse recurrence frequencies up to 400KHz. The PVX-4140 can also drive resistive or inductive loads, within limitations. Contact DEI for additional information and applications assistance.

> The power dissipated in the PVX-4140 when driving a capacitive load is defined by the formula CV^2F, where C is the total load capacitance, including the capacitance of the load, interconnect cable, and the internal capacitance of the PVX-410. V is the pulse voltage, and F is the pulse repetition frequency (or the total pulses per second). (For these calculations, the internal capacitance of the PVX-410 is 120pF, and RG-59 cable is 21.5pf/foot.) Given the maximum dissipation of 100W, the maximum load capacitance, frequency and/or voltage at which the PVX-410 can operate can be approximated using this formula. This formula also approximates the high voltage power supply requirements needed to drive a given load at a specific voltage and frequency. This formula is not applicable when driving resistive or inductive loads.